Bias-induced conductance switching in single molecule junctions containing a redox-active transition metal complex
نویسندگان
چکیده
ABSTRACT The paper provides a comprehensive theoretical description of electron transport through transition metal complexes in single molecule junctions, where the main focus is on an analysis of the structural parameters responsible for bias-induced conductance switching as found in recent experiments, where an interpretation was provided by our simulations. The switching could be theoretically explained by a two-channel model combining coherent electron transport and electron hopping, where the underlying mechanism could be identified as a charging of the molecule in the junction made possible by the presence of a localized electronic state on the transition metal center. In this article, we present a framework for the description of an electron hopping-based switching process within the semi-classical Marcus-Hush theory, where all relevant quantities are calculated on the basis of density functional theory (DFT). Additionally, structural aspects of the junction and their respective importance for the occurrence of irreversible switching are discussed. GRAPHICAL ABSTRACT
منابع مشابه
Regulating a benzodifuran single molecule redox switch via electrochemical gating and optimization of molecule/electrode coupling.
We report a novel strategy for the regulation of charge transport through single molecule junctions via the combination of external stimuli of electrode potential, internal modulation of molecular structures, and optimization of anchoring groups. We have designed redox-active benzodifuran (BDF) compounds as functional electronic units to fabricate metal-molecule-metal (m-M-m) junction devices b...
متن کاملRedox-driven conductance switching via filament formation and dissolution in carbon/molecule/TiO2/Ag molecular electronic junctions.
Carbon/molecule/TiO2/Au molecular electronic junctions show robust conductance switching, in which a metastable high conductance state may be induced by a voltage pulse which results in redox reactions in the molecular and TiO2 layers. When Ag is substituted for Au as the "top contact", dramatically different current/voltage curves and switching behavior result. When the carbon substrate is bia...
متن کاملSingle-Molecule Charge Transport and Electrochemical Gating in Redox-Active Perylene Diimide Junctions
A series of redox-active perylene tetracarboxylic diimide (PTCDI) derivatives have been synthesized and studied by electrochemical cyclic voltammetry and electrochemical scanning tunnelling microscopy break junction techniques. These PTCDI molecules feature the substitution of pyrrolidine at the bay (1,7-) position of perylene and are named pyrrolidine-PTCDIs. These moieties exhibit a small ban...
متن کاملElectron transport and redox reactions in carbon-based molecular electronic junctions.
A unique molecular junction design is described, consisting of a molecular mono- or multilayer oriented between a conducting carbon substrate and a metallic top contact. The sp2 hybridized graphitic carbon substrate (pyrolyzed photoresist film, PPF) is flat on the scale of the molecular dimensions, and the molecular layer is bonded to the substrate via diazonium ion reduction to yield a strong,...
متن کاملControl of single-molecule junction conductance of porphyrins via a transition-metal center.
Using scanning tunneling microscope break-junction experiments and a new first-principles approach to conductance calculations, we report and explain low-bias charge transport behavior of four types of metal-porphyrin-gold molecular junctions. A nonequilibrium Green's function approach based on self-energy corrected density functional theory and optimally tuned range-separated hybrid functional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 147 شماره
صفحات -
تاریخ انتشار 2016